Skip to main content

Genome Sequencing and Covid-19: How Scientists Are Tracking the Virus

As machines improved, the impact was felt mainly in university labs, which had relied on a process called Sanger sequencing, developed in the mid-1970s by the Nobel laureate Frederick Sanger. This laborious technique, which involved running DNA samples through baths of electrically charged gels, was what the scientists at Oxford had depended upon in the mid-1990s; it was also what Dave O’Connor, a virologist at the University of Wisconsin, Madison, was using in the early 2000s, as he and his lab partner, Tom Friedrich, tracked virus mutations. “The H.I.V. genome has about 10,000 letters,” O’Connor told me, which makes it simpler than the human genome (at three billion letters) or the SARS-CoV-2 genome (at about 30,000). “In an H.I.V. genome, when we first started doing it, we would be able to look at a couple hundred letters at a time.” But O’Connor says his work changed with the advent of new sequencing machines. By around 2010, he and Friedrich could decode 500,000 letters in a day. A few years later, it was five million.